On a class of preconditioners for solving the Helmholtz equation

نویسندگان

  • C. Vuik
  • C. W. Oosterlee
چکیده

In 1983, a preconditioner was proposed [J. Comput. Phys. 49 (1983) 443] based on the Laplace operator for solving the discrete Helmholtz equation efficiently with CGNR. The preconditioner is especially effective for low wavenumber cases where the linear system is slightly indefinite. Laird [Preconditioned iterative solution of the 2D Helmholtz equation, First Year’s Report, St. Hugh’s College, Oxford, 2001] proposed a preconditioner where an extra term is added to the Laplace operator. This term is similar to the zeroth order term in the Helmholtz equation but with reversed sign. In this paper, both approaches are further generalized to a new class of preconditioners, the so-called “shifted Laplace” preconditioners of the form ∆φ−αk2φ with α ∈C. Numerical experiments for various wavenumbers indicate the effectiveness of the preconditioner. The preconditioner is evaluated in combination with GMRES, Bi-CGSTAB, and CGNR.  2004 IMACS. Published by Elsevier B.V. All rights reserved.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Shifted Laplacian RAS Solvers for the Helmholtz Equation

where Ω is a bounded polygonal region in <, and the ∂ΩD, ∂ΩN and ∂ΩS correspond to subsets of ∂Ω where the Dirichlet, Neumann and Sommerfeld boundary conditions are imposed. The main purpose of this paper is to introduce novel two-level overlapping Schwarz methods for solving the Helmholtz equation. Among the most effective parallel two-level domain decomposition solvers for the Helmholtz equat...

متن کامل

Parallel Preconditioners for Plane Wave Helmholtz and Maxwell Systems with Large Wave Numbers

A kind of non-overlapping domain decomposition preconditioner was proposed to solve the systems generated by the plane wave least-squares (PWLS) method for discretization of Helmholtz equation and Maxwell equations respectively in [13] and [14]. In this paper we introduce overlapping variants of this kind of preconditioner and give some comparison among these domain decomposition preconditioner...

متن کامل

Domain decomposition preconditioning for high-frequency Helmholtz problems with absorption

In this paper we give new results on domain decomposition preconditioners for GMRES when computing piecewise-linear finite-element approximations of the Helmholtz equation −∆u − (k2 + iε)u = f , with absorption parameter ε ∈ R. Multigrid approximations of this equation with ε 6= 0 are commonly used as preconditioners for the pure Helmholtz case (ε = 0). However a rigorous theory for such (so-ca...

متن کامل

Shifted Laplacian RAS Solvers 2 for the Helmholtz Equation 3

The main purpose of this paper is to introduce novel two-level overlapping 15 Schwarz methods for solving the Helmholtz equation. Among the most effective par16 allel two-level domain decomposition solvers for the Helmholtz equation on general 17 unstructured meshes, we mention the FETI-H method introduced by Farhat et al. [5], 18 and the WRAS-H-RC method introduced by Kimn and Sarkis [10]. FET...

متن کامل

DELFT UNIVERSITY OF TECHNOLOGY REPORT 02-12 Some Numerical Aspects for Solving Sparse Large Linear Systems Derived from the Helmholtz Equation

In this report, several numerical aspects and difficulties for solving a linear system derived from the time-harmonic wave equations are overviewed. The presentation begins with the derivation of the governing equation for waves propagating in general inhomogeneous media. Due to the need of numerical solutions, various discretizations based on finite difference are discussed. Some numerical met...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2004